The Extreme Light Infrastructure ERIC
EU

ELI Beamlines and the highest peak power laser diodes in the world

Lawrence Livermore has the highest peak power laser diodes in the world

Lawrence Livermore National Laboratory (LLNL; Livermore, CA) has the highest-peak-power laser-diode arrays in the world, which in total produce a peak power of 3.2 MW. The diode arrays, which were developed and fabricated by Lasertel (Tucson, AZ), will act as the primary pump source for the High-Repetition-Rate Advanced Petawatt Laser System (HAPLS), currently under construction at LLNL.

HAPLS is designed to be capable of generating peak powers greater than one petawatt (1 quadrillion watts, or 10^15) at a repetition rate of 10 Hertz, with each pulse lasting 30 femtoseconds (30 quadrillionths of a second). This very high repetition rate will be a major advancement over current petawatt system technologies, which rely on flashlamps as the primary pump source and can fire a maximum of once per second. In HAPLS, the diode arrays fire 10 times per second, delivering kilojoule laser pulses to the final power amplifier. The HAPLS is being built and commissioned at LLNL and then installed and integrated into the ELI Beamlines facility starting in 2017.

The high repetition rate is possible because, unlike existing petawatt lasers, which are flashlamp-pumped, HAPLS is pumped by diode arrays capable of delivering kilojoule pulses at high repetition rates to the final power amplifier.

Each laser-diode array supplied by Lasertel supplied contains multiple 888 nm laser-diode bars mounted on water-cooled stacks (see figure). The array operates at a brightness of 10 kW/cm2, which Lasertel notes is a world record, at a repetition frequency of 10 Hz. Each array operates at a total peak power of 800 kW, with four such arrays combined and used as the primary pump sources for the HAPLS laser. More than 500,000 combined laser diode emitters combine to produce the total diode optical input power of 3.2 MW.

The whole article read please here.